Reinforcement Learning and
AlphaGo

Lingpeng Kong
Department of Computer Science, The University of Hong Kong

Based on: Probabilistic Machine Learning by Kevin Murphy
Slides from: Saw Shier Nee with special thanks!

Reinforcement Learning

reward

R,
E Rt+1
- .
- _S.. | Environment

At each time step t, an agent experiences a state s(t) € S.

state space

e.g.
A snapshot of the current game board.
Number of passengers and taxis at different locations in a city.

Reinforcement Learning

reward

R,
E Rt+1
- .
- _S.. | Environment

action space

At each time step t, an agent takes an action a(t), chosen from
some feasible set A(t).

e.g.
possible moves in a board game.

Reinforcement Learning

reward

R,
E Rt+1
- :
- _S.. | Environment

reward

One time step later, in part as a consequence of its action, the
agent receives a reward R¢+1 and find it self in a new state.

The next state (at time t+1) is a (probabilistic) function of the current state and action
taken: s(t+1) ~ o(a(t), s(t)).

Reinforcement Learning

Rewards: -1 per time-step

Start

Actions: N, E, S, W

States: Agent’s location

Goal

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

Markov Reward Processes

A Markov chain can be represented with a transition matrix. For a Markov state s and
successor state s’, the state transition probability is defined by

P =P [Sii1=5 | St =5

State transition matrix defines transition probabilities from all states s to all
successor states s’

P = from

o
O
O O O =
o
-
p—t

Student Markov Chain Transition Matrix

Class\l 0.)

Sleep

- Class 2 0.8

0.2

0.2

0.4

Pub

0.4

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

C1 C2

0.5
0.2 0.4
0.1

C3

0.8

0.4

Pass

0.6

Pub

0.4

FB
0.5

0.9

Sleep

0.2

1.0

Markov Reward Processes

R is a reward function

R, = "3[Rt_|_1 | S; = S]

0.9

0.1 R

Y is a discount factor 7 € [0, 1]

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

Markov Reward Processes

Return: total Discounted reward from time-step t

Gy = Rt+1 T ”VRt—I—Q T = Z”Vth—l—k—l—l
k=0

Y close to 0 leads to “myopic” evaluation

Y close to 1 leads to “far-sighted” evaluation

The state value function v(s) of an MRP is the expected return starting from state s

v(s) = E|G; | St = s]

Markov Reward Processes

Sample returns for Student MRP

Starting from S; = C1 with y=0.5

C1l C2 C3 Pass Sleep v1=—2—2*%—2*%+10*% — —2.25

Cl1 FB FB C1 C2 Sleep =—2—1x%xz3—1xz—2%3—2x3 = —3.125

C1l C2 C3 Pub C2 C3 Pass Sleep v1:—2—2*%—2*%+1*%—2*1—16 — —3.41
G 1 1 1 1

FB FB FB C1 C2 C3 Pub C2 Sleep

Markov Reward Processes

v(s) for y =0

R=+10

v(s) for y =0.9

v(s) for y =1

R=+10

Markov Decision Processes

] o Facebook
Markov reward process with decisions. R
A is a finite set of actions
/
7)38/ — P[St—l—l — S | St — S,At — &]
Quit Facebook
R=0 R=-I

Ry =E|Riy1|Se =s,4: =a Study

’ e

A policy 11 is a distribution over actions given states.

w(a|s)=PA; =al| S =s]

Pub
R=+I

0.4
0.2

0.4

Markov Decision Processes

The state-value function vx(s) of an MDP is the expected return starting from state s,
and then following policy .

vr(8) = E |Gy | St = s

The action-value function gx(s, a) is the expected return starting from state s, taking
action a, and then following policy .

qr(s,a) =E.|G; | S¢ = s, Ay = al

Bellman Optimality Equation

The optimal value functions are recursively related by the Bellman optimality
equations:

Vi (8) = max q. (s, a)
a

q«(s,a) = RI + Z PL vy (s")

s’eS

Outline

Representation of Board (deep
convolutional neural networks, CNN)

Imitating expert moves (supervised
learning) Policy network (SL)

Predicting the wining possibility
given a board configuration

(reinforcement learning)

Select a move, more wisely (Monte
Carlo tree search)

...................

*4494 444
‘e +

*4+ *44
00000

909000 : i..’
oo

- / :
'13T 7
i
Fe SR 2 U

Deterministic MDP

g

N &

* Representation of Board (deep
convolutional neural networks, CNN)

Current Board Current Board

L.: : 000000000
" i 3 " 000001000
> = _% é‘ 0-1001-1100
H . 01001-1000
N 00 00-10000
N 00 000 0000
P . 0-10000000
g g ‘<|/ ~~ 000000000 ~

S

* Representatior
convolutional r

Current Board

Current Board

B

28

<

00 000 00O0O
000001000
0-1001-1100
01001-1000
00 00-10000
00 000 00O0O
0-10000000

. 000000000

of Board (deep e

eural networks, CNN)

0" ¢(s)

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

* Representatior

convolutional r

of Board (deep
eural networks, CNN)

> &

The cat sat on the red mat

Fusy connected Convolution Fully connected
laver e A -
— ol l.---.l
— e
KMo pooing / L ‘ .
o] 4 —REE
| .. '."" / . 5 ‘
L /| L / 1 ¥
e [TV] T B
- N
i ! ,)
(8 1 /
‘:rr:f::h.ﬂnﬂ QL
|Me=d| l 1\ < L] -
- LO (Input) L1 L2 L3 F5 F6
I 512x512 256x256 128x128 64x64 32x32 (Output)
Dynarsc
K-mas ok
(o= 18h =5}
/ RELU RELU RELU RE RELU RELU
Wicka: !’ CONV CONV l(.,ON\ l CONV {CONVl
Cofeadutian
.;m-3./[1/[// L IR
B = 1B _J =
] |]
— . é l »
Precied \\\ \f . ._" 2 :
mll;_n-\w \'\.\‘ ‘ j :—
Tt -
|5=/} .\'\. —E , q Ry
= S

Imitating expert moves (supervised
learning) fpiseasdccisass

¢

ote

Current Board Next Action
00 000 0000 | | 000000000
00 000 1000 000000000
0-1001-1100 .« g 000000000
01001-1000 PredICthl‘\ 000000000
00 00-10000 000001000
00 000 0000 MOdEl 000000000
0-10000000 000000000
00 000 0000 000000000

s g:s > plals) plals) argmax @ |niiglizing policy

4
+
4
4
4
+
4

6006 60

44444

o
+44449204
+44gt 1o+
092 2.22¢
00006006

n
O
S o
D
O =
“4—
C @
O O
O
S
qV)
S 5
O

O
© 5
C y—
QO <
= O
@) N’

=
by
O
)
op
@
Q.
o)
=
=
=
O,
L
)
o)
=
-
O
d
D
Al
®

+
v
+
v
+
-
++
+
bt Syt
o +4
++
-
++
i
_—
++
+4

fitted value iteration algorithm

0000000008

+gh A4+
@ ir s b pbia
000000500

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

e

s 24733 A Current Board Next Action
00 000 0000 000000000
00 000 1000 000000000
0-1001-1100 —r 000000000
01 001-1000 Prediction 000000000
e 00 00-10000 000001000
00 000 0000 Model 000000000
0-1000 0000 000000000
00 000 0000 000000000
s g:s -> plals) plals) argmax a
. * Vg(sl)
+4 Current Board .
H
- 000000000 -
iz i " 000001000
0-1001-1100]
0 ¢)¢ . 01001-1000 ‘ 1(win)/0(lose)
+44 + - 00 00-10000
3 > +44 00 0000000
‘ot + x _ 0-10000000
13 o -~ 000000000

4+ %

4
tat
OO
L

999t

S f: s-> v(s)

00060006
| ++++1+*++++*++-

* Predicting the wining possibility st
given a board configuration 3
(reinforcement learning)

Current Board

o 000000000

| 00 000 1000
0-1001-1100
01001-1000
00 00-10000
00 000 0000
0-10000000

. 000000000

» 1(win)/0(lose)

f: s-> v(s) v(s)

(S, Z) — training pair (X,y)

“29,400,000 positions from 160,000 games
played by KGS 6 to 9 dan human players”

Overfitting, Training error rate 0.19, Test error rate 0.37

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

O rbobbbrbadde

o

++
*
9%
*
*
*
*
(W *
Rt
>4
)
E 4%
< *
+4

(S, Z) — training pair (x,y) — self play?

P, @ls)

Supervised Learning policy (SL policy)

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

++
+4
298¢
+4
4
++
b4
Y **
4+
fot
)06
*
+®

<

50,
[} *
_../

-4 hat

(S, Z) — training pair (x,y) — Better policy?

p,, (@ |s)

* better estimation of the value

better policy

Reinforcement Learning policy (SL policy)

policy gradient

*
+44:
0 00000000008¢

e
) @
s

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

4
*
444

1060000000000

Win/loss

Win/loss

Win/loss

Win/loss

¢

e 0000000000,

g3

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

2 e

o 4
#g :

+44444 444444

+
*
*
*
*
*
*
*
+
13

4444444444

Board position

957 et

l0ose 7z = -1

policy gradient

* Predicting the wining possibility
given a board configuration
(reinforcement learning)

Policy Network ver.
20000

Reinforcement Learning policy (RL policy)

‘a new self-play data set consisting of
30,000,000 positions, each sampled from a
separate game”

e Select a move, more wisely (Monte

Carlo tree search)

Selection b Expansion
$ $
. mak Q + u(P) | |
:E& T 0o S
- 11 . -
Q+uP) max o
#t (1)
'\

47

a; = argmax(Q(s;, a) + u(s,a))

P(s,a)
1+ N(s,a)

u(s,a) x

V(sy)=(1— A)vg(sy) + Az

WS
M ot
|)
Evaluation d Backup
: fr
. . N,
JF* inAd 4T
LA A LA / [
() HE
| :
oL
(34) s IRz
/
n
N(s,a)=> 1(s,a,i)
i=1l n
Q(s,a) = N(s.2) ,ZZ:I 1(s,a,i)V(s]

Infinite Monkey Theorem

