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Reinforcement Learning

reward

R,
E Rt+1
- .
- _S.. | Environment

At each time step t, an agent experiences a state s(t) € S.

state space

e.g.
A snapshot of the current game board.
Number of passengers and taxis at different locations in a city.



Reinforcement Learning

reward
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action space

At each time step t, an agent takes an action a(t), chosen from
some feasible set A(t).

e.g.
possible moves in a board game.



Reinforcement Learning

reward
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- _S.. | Environment

reward

One time step later, in part as a consequence of its action, the
agent receives a reward R¢+1 and find it self in a new state.

The next state (at time t+1) is a (probabilistic) function of the current state and action
taken: s(t+1) ~ o(a(t), s(t)).




Reinforcement Learning

Rewards: -1 per time-step

Start

Actions: N, E, S, W

States: Agent’s location

Goal

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver



Markov Reward Processes

A Markov chain can be represented with a transition matrix. For a Markov state s and
successor state s’, the state transition probability is defined by

P =P [Sii1=5 | St =5

State transition matrix defines transition probabilities from all states s to all
successor states s’
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Student Markov Chain Transition Matrix
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Markov Reward Processes

R is a reward function

R, = "3[Rt_|_1 | S; = S]

0.9

0.1 R

Y is a discount factor 7 € [0, 1]

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver



Markov Reward Processes

Return: total Discounted reward from time-step t

Gy = Rt+1 T ”VRt—I—Q T = Z”Vth—l—k—l—l
k=0

Y close to 0 leads to “myopic” evaluation

Y close to 1 leads to “far-sighted” evaluation

The state value function v(s) of an MRP is the expected return starting from state s

v(s) = E|G; | St = s]




Markov Reward Processes

Sample returns for Student MRP

Starting from S; = C1 with y=0.5

C1l C2 C3 Pass Sleep v1=—2—2*%—2*%+10*% — —2.25

Cl1 FB FB C1 C2 Sleep =—2—1x%xz3—1xz—2%3—2x3 = —3.125

C1l C2 C3 Pub C2 C3 Pass Sleep v1:—2—2*%—2*%+1*%—2*1—16 — —3.41
G 1 1 1 1

FB FB FB C1 C2 C3 Pub C2 Sleep



Markov Reward Processes

v(s) for y =0

R=+10

v(s) for y =0.9

v(s) for y =1

R=+10




Markov Decision Processes

] o Facebook
Markov reward process with decisions. R
A is a finite set of actions
/
7)38/ — P[St—l—l — S | St — S,At — &]
Quit Facebook
R=0 R=-I

Ry =E|Riy1|Se =s,4: =a Study

’ e

A policy 11 is a distribution over actions given states.

w(a|s)=PA; =al| S =s]

Pub
R=+I
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Markov Decision Processes

The state-value function vx(s) of an MDP is the expected return starting from state s,
and then following policy .

vr(8) = E |Gy | St = s

The action-value function gx(s, a) is the expected return starting from state s, taking
action a, and then following policy .

qr(s,a) =E.|G; | S¢ = s, Ay = al




Bellman Optimality Equation

The optimal value functions are recursively related by the Bellman optimality
equations:

Vi (8) = max q. (s, a)
a

q«(s,a) = RI + Z PL vy (s")

s’eS



Outline

Representation of Board (deep
convolutional neural networks, CNN)

Imitating expert moves (supervised
learning) Policy network (SL)

Predicting the wining possibility
given a board configuration

(reinforcement learning)

Select a move, more wisely (Monte
Carlo tree search)
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* Representation of Board (deep
convolutional neural networks, CNN)

Current Board Current Board
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* Representatior
convolutional r
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of Board (deep e

eural networks, CNN)

0" ¢(s)

Feature # of planes Description

Stone colour 3  Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1  Whether a move at this point is a successful ladder capture
Ladder escape 1  Whether a move at this point is a successful ladder escape
Sensibleness 1  Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1  Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).



* Representatior

convolutional r

of Board (deep
eural networks, CNN)
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Imitating expert moves (supervised
learning) fpiseasdccisass
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fitted value iteration algorithm
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* Predicting the wining possibility
given a board configuration
(reinforcement learning)
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* Predicting the wining possibility st
given a board configuration 3
(reinforcement learning)

Current Board
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f: s-> v(s) v(s)

(S, Z) — training pair (X,y)

“29,400,000 positions from 160,000 games
played by KGS 6 to 9 dan human players”

Overfitting, Training error rate 0.19, Test error rate 0.37



* Predicting the wining possibility
given a board configuration
(reinforcement learning)
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(S, Z) — training pair (x,y) — self play?

P, @ls)

Supervised Learning policy (SL policy)



* Predicting the wining possibility
given a board configuration
(reinforcement learning)
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(S, Z) — training pair (x,y) — Better policy?

p,, (@ |s)

* better estimation of the value

better policy

Reinforcement Learning policy (SL policy)

policy gradient
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* Predicting the wining possibility
given a board configuration
(reinforcement learning)
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* Predicting the wining possibility
given a board configuration
(reinforcement learning)
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* Predicting the wining possibility
given a board configuration
(reinforcement learning)

Policy Network ver.
20000

Reinforcement Learning policy (RL policy)

‘a new self-play data set consisting of
30,000,000 positions, each sampled from a
separate game”




e Select a move, more wisely (Monte

Carlo tree search)

Selection b Expansion
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Infinite Monkey Theorem




