Reinforcement Learning and AlphaGo

COMP3314 — Lecture 10

Lingpeng Kong Department of Computer Science, The University of Hong Kong

Based on: Probabilistic Machine Learning by Kevin Murphy

Slides from: <u>Saw Shier Nee</u> with special thanks!

state space

At each time step t, an agent experiences a state $s(t) \in S$.

e.g.

A snapshot of the current game board.

Number of passengers and taxis at different locations in a city.

action space

At each time step t, an agent takes an action a(t), chosen from some feasible set A(t).

e.g. possible moves in a board game.

reward

One time step later, in part as a consequence of its action, the agent receives a reward R_{t+1} and find it self in a new state.

The <u>next state</u> (at time t+1) is a (probabilistic) function of the current state and action taken: $s(t+1) \sim \sigma(a(t), s(t))$.

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent's location

A Markov chain can be represented with a transition matrix. For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State transition matrix defines transition probabilities from all states s to all successor states s'

$$\mathcal{P} = \textit{from} egin{bmatrix} \textit{to} \ \mathcal{P}_{11} & \ldots & \mathcal{P}_{1n} \ dots \ \mathcal{P}_{n1} & \ldots & \mathcal{P}_{nn} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.5 & 0 & 0.2 & 0.3 \\ 0.9 & 0 & 0 & 0.1 \\ 0 & 0 & 0.8 & 0.2 \end{bmatrix}$$

Student Markov Chain Transition Matrix

 \mathcal{R} is a reward function

$$\mathcal{R}_s = \mathbb{E}[R_{t+1} \mid S_t = s]$$

 γ is a discount factor $\gamma \in [0, 1]$

Return: total Discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- γ close to 0 leads to "myopic" evaluation
- γ close to 1 leads to "far-sighted" evaluation

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

Sample returns for Student MRP

Starting from $S_1 = C1$ with $\gamma = 0.5$

$$v_{1} = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} = -2.25$$

$$v_{1} = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} = -3.125$$

$$v_{1} = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.41$$

$$v_{1} = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.20$$

Markov Decision Processes

Markov reward process with decisions.

 \mathcal{A} is a finite set of actions

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

A policy π is a distribution over actions given states.

$$\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$$

Markov Decision Processes

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π .

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π .

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Bellman Optimality Equation

The optimal value functions are recursively related by the Bellman optimality equations:

$$v_*(s) = \max_a q_*(s, a)$$

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Outline

 Representation of Board (deep convolutional neural networks, CNN)

Imitating expert moves (supervised learning)
 Policy network (SL)

 Predicting the wining possibility given a board configuration (reinforcement learning)
 Value network

 Select a move, more wisely (Monte Carlo tree search)

Deterministic MDP

 Representation of Board (deep convolutional neural networks, CNN)

Current Board

Current Board

 Representation of Board (deep convolutional neural networks, CNN)

Current Board

Current Board

$$\theta^T \phi(s)$$

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

 Representation of Board (deep convolutional neural networks, CNN)

Imitating expert moves (supervised learning)

"29,400,000 positions from 160,000 games played by KGS 6 to 9 dan human players"

Overfitting, Training error rate 0.19, Test error rate 0.37

(S, Z) — training pair (x,y) — self play?

Supervised Learning policy (SL policy)

(S, Z) — training pair (x,y) — Better policy?

$$p_{\sigma/\rho}$$
 (a | s)

better policy

better estimation of the value

Reinforcement Learning policy (SL policy)

ver. 0 = Supervised Learning policy (SL policy)

Policy Network ver.0 Win/loss **Policy Network ver.0** VS Policy Network ver. **Policy Network ver.153** VS Win/loss 200 Policy Network ver. **Policy Network ver.78** Win/loss VS 201 Policy Network ver. Policy Network ver. Win/loss VS 12531 20000

Board position

Update
$$\Delta
ho\proptorac{\partial \log p_{\!
ho}(a_t|s_t)}{\partial
ho}z_t$$

policy gradient

Policy Network ver. 20000

Reinforcement Learning policy (RL policy)

"a new self-play data set consisting of 30,000,000 positions, each sampled from a separate game"

 Select a move, more wisely (Monte Carlo tree search)

Infinite Monkey Theorem

