Transformers

COMP3314 — Lecture 9

Lingpeng Kong

Department of Computer Science, The University of Hong Kong

Recurrent Neural Network

RNN as Encoder

I

I am

I am going

I am going to do an internship in Google

RNN as Decoder (RNNLM)

$$p(y_t \mid \boldsymbol{y}_{< t})$$

Machine Translation

中秋快樂!

 \boldsymbol{x}

Happy mid autumn festival!

y

Happy mid autumn festival!

$$p(\mathbf{y}) = p(y_1 \dots y_n) = \prod_{t=1}^{n} p(y_t \mid \mathbf{y}_{< t})$$

$$p(y_t \mid \boldsymbol{y}_{< t})$$

Machine Translation

中秋快樂!

 \boldsymbol{x}

Happy mid autumn festival!

y

Recurrent Neural Network

Encoder + Decoder

Sequence to Sequence Model

Sequence to Sequence Model

Encoder

Alignment in Machine Translation

Some words might have no "counter-part".

Alignment can be many-to-one (or one-to-many).

Sequence to Sequence Model

Sequence to Sequence Model

中

Use direct connection to the encoder to <u>focus on (attend</u> <u>to)</u> a particular part of the source sequence.

Where do I want to look at now?

Happy

<\$>

Use direct connection to the encoder to <u>focus on (attend</u> <u>to)</u> a particular part of the source sequence.

Use direct connection to the encoder to <u>focus on (attend</u> <u>to)</u> a particular part of the source sequence.

Use direct connection to the encoder to focus on (attend to) a particular part of the source sequence. $softmax(\mathbf{w})$ 中 Happy <5>

Memory Abstraction

Task: Finding the most "relevant" item in the memory.

Dot-Product-Softmax Attention

Task: Finding the most "relevant" item in the memory.

Dot-Product-Softmax Attention

0

Query

Memory (key-value pairs)

Dot-Product-Softmax Attention

weighted sum

Considering the full sequence as context

Memory (key-value pairs)

Self-attention

This is almost transformer — except a few things.

Transformer (almost)

Self-attention in Transformer

Memory (key-value pairs)

Self-attention in Transformer

Positional Embeddings

Transformer (positional embedding)

Positional Encoding

$$\begin{bmatrix} \sin(\frac{i}{10000^{2 \times \frac{1}{d}}}) \\ \cos(\frac{i}{10000^{2 \times \frac{1}{d}}}) \\ \vdots \\ \sin(\frac{i}{10000^{2 \times \frac{d/2}{d}}}) \\ \cos(\frac{i}{10000^{2 \times \frac{d/2}{d}}}) \\ -$$

Index in the sequence

The idea of relative position

Positional Encoding

$$egin{aligned} \sin(rac{i}{10000^{2 imesrac{1}{d}}}) \ \cos(rac{i}{10000^{2 imesrac{1}{d}}}) \ &dots \ \sin(rac{i}{10000^{2 imesrac{d/2}{d}}}) \ \cos(rac{i}{10000^{2 imesrac{d/2}{d}}}) \end{aligned}$$

Periodic: Hope this will work in extrapolation.

Positional Encoding

$$egin{aligned} \sin(rac{i}{10000^{2 imesrac{1}{d}}}) & \cos(rac{i}{10000^{2 imesrac{1}{d}}}) & \sin(rac{i}{10000^{2 imesrac{d/2}{d}}}) & \sin(rac{i}{10000^{2 imesrac{d/2}{d}}}) & \cos(rac{i}{10000^{2 imesrac{d/2}{d}}}) & \sin(rac{i}{10000^{2 imes}}) & \sin(rac{i}{100000^{2 imes}}) & \sin(rac{i}{10000^{2 imes}}) & \sin(rac{i}{100000^{2 imes}}) & \sin(rac{i}{10000^{2 imes}}) & \sin(rac{i}{100000^{2 imes}}) & \sin(rac{i}{100000^{2 imes}}) & \sin(rac{i}{100000^{2 ime$$

Periodic: Hope this will work in extrapolation. (No)

Feed Forward Layer

Feed Forward Layer

Layer Normalization (Ba et al, 2016)

$$\mathbf{h} = \mathbf{g} \odot N(\mathbf{x}) + \mathbf{b}$$

$$N(\mathbf{x}) = \frac{\mathbf{x} - \mu}{\sigma} \qquad \qquad \mu = \frac{1}{H} \sum_{i=1}^{H} x_i \qquad \sigma = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (x_i - \mu)^2}$$

Smoother gradients, faster training and better generalization accuracy. (Xu et al, Neurips 2019)

Layer Normalization

Multi-head Attention

Scaled Dot-Product Attention

$$score(q, k) = \frac{q^T k}{\sqrt{d_k}}$$

multiple copies

Multi-head Attention

Improve the "resolution" of the attention mechanism.

Multi-head Attention

Need to prevent the attention the future words.

$$e_{ij} = \begin{cases} q_i^\mathsf{T} k_j, j < i \\ -\infty, j \ge i \end{cases}$$

Need to prevent the attention the future words.

$$e_{ij} = \begin{cases} q_i^\mathsf{T} k_j, j < i \\ -\infty, j \ge i \end{cases}$$

Need to prevent the attention the future words.

$$e_{ij} = \begin{cases} q_i^\mathsf{T} k_j, j < i \\ -\infty, j \ge i \end{cases}$$