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Flashback — Training a RNN Language Model

Predicted probability (0 e i g
distributions - |
¢/ Parameters in RNNs
h)__ h(1) h(2) h(3) h(4)
O O
o W, Wi, WL @ Wh
o 1 >
O O
v v
8 O O
(1) (2)| © 3) O (4)
eMlaol €“lgl €lag| ©
O O O
FE E Tl;]
Training Corpus —————>  the students  opened their

(D) 2(2) 2(3) e



Logistic Regression

hi = wix1 + woxe + b

_ 1
1 +exp (—h1)

P1



Logistic Regression

hi = wix1 + woxe + b
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Loss Function

case y = 1 :
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Computational Graphs

Input L1 L2

Parameter w1 W9

Expression h1  P1 loss

Operation X +— sigmoid — log
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How to minimize? (Automatic Differentiation)
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How to minimize? (Automatic Differentiation)
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Other Loss Function?

8
— Zero-one loss
7| — Hinge loss
—— Perceptron loss
6| —— Log loss
— Squared hinge loss
3 Modified huber loss |




“Deeper” Neural Network




Softmax Function
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Neuralize the dice!
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Recurrent Neural Network

Word Embeddings



Word Embeddings
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Recurrent Neural Network (Language Model)




Flashback — Training a RNN Language Model
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Recurrent Neural Network (Language Model)




Softmax Function
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RNNs for Tagging




Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition

Adv = Adverb
Ad] = Adjective



Named Entity Recognition (NER)

NPUT: Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.]|, easily topping
forecasts on [Location Wall Street|, as their CEO |[Person Alan Mulally]
announced first quarter results.



Named Entity Recognition (NER)

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company
SL = Start Location

CL — Continue Location



RNNs for Tagging




RNNs for Sentence Classification




RNNs for Sentence Classification
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Vanishing Gradient in RNNs

Gradient Flow Direction

In general, the longer the path, the smaller the gradient signal.



Long Short-Term Memory (LSTMs)
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Typical NLP Task: Predicting gross revenues of movies

Models Mean Absolute Error ($)

Baseline: Predict median from training data /079

Metadata (D): U.S.origin? ,log budget, # screens, runtime

name, production house, genre(s), scriptwriter(s), /7,513
director(s), country of origin, primary actors, release date,
MPAA rating, and running time

Text (T): Movie Reviews (from only before the release date)

Ehe New JJork Times

Elvis Mitchell Word S, bi grams,

It becomes less crisp on screen than it was on the

e o operie e e[ trigrams, and
dependency relations

June 1993, p.C1]

6,729

@ metacritic

THE AUSTIN CHRONIGLE

Marc Saviov

| continually found myself longing for the sheer
intensity of the director's past glories, like Jaws, or
even Duel. Spielberg seems to be trying so very hard
for that elusive “Gosh, Wow, Sense of Wonder!” that it
all looks strained in spots. Read full review ('

Metadata (D) + Text (T) 6,/25
(Smith, 2010)
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Models

Linear Regression:
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‘elastic net” reqularization
(Zou and Hastie, 2005; Friedman et al., 2008)



Features

Words:

Jurassic
Park
lacks

the
emotional
unity
of
Spielberg’s
classics

Jurassic Park lacks the emotional unity of Spielberg’s classics .

Bigrams:

Jurassic Park
Park lacks
Lacks the

the emotional
emotional unity
unity of

of Spielberg’s

Spielberg’s classics
classics.
. <e0s>

J]
NNP

VBZ
DT
J]
NN
IN
NNP
POS
NNS

Part-of-speech tags:

JJ|
Jurassic

4—1~arnod~\

NNP

/_M

Park

nsubj~

Named Entities:

Jurassic

Movie: Park

Person: Spielberg

Dependencies (Syntax Parsing):

punct

nmod:of
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case

nmod:poss
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—case
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Bag-of-words Models

Jurassic Park lacks the emotional unity of Spielberg’s classics .

Words:

Jurassic
Park
lacks

the
emotional
unity
of
Spielberg’s
classics

featurized
(OOC@000 ++00@O00O0 @O = 00000 |
lacks Park classics  coeeen el
(000000 == 000000 Q= 00000 )

Full Vocabulary

Weights Vector
(learned)



Natural Language Processing (NLP) Pipeline

General-purpose linguistic modules:

Words Bigrams Light preprocessing (mostly rule-based)

Part-of-speech tags: word classes

Supervised learning from linguistic data

Named Entities: words of interests (CoreNLP pipeline)

Dependencies (Syntax Parsing): Internal structures



Feature Engineering

"' Words
Bigrams
i POS tags _
| Named Entities |

training set

>

| Dependencies
| Meta-data
| BYOF

test set
(real product)

features

development (dev) set



Wait, where is deep learning?
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General-purpose representation learning

Word2vec — pertained word embeddings
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Pretraining and Contextualized Word Representations
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[SEP]
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[SEP]




Pretraining and Contextualized Word Representations

(©000000000000) »  contextualized word representation
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Implicit linguistic knowledge

Jurassic Park lacks the emotional unity of Spielberg’s classics .



Pretraining and Fine-tuning
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Jurassic Park lacks the emotional unity of Spielberg’s classics .



This is BERT!

BERT: Bidirectional
Encoder Representations
from Iransformers

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension
qguestions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph.

Rank Model EM F1
Human Performance 86.831 89.452
Stanford University
(Rajpurkar & Jia et al. '18)
1 ALBERT (ensemble model) 89.731 92.215

Sep 18, 2019

Google Research & TTIC
https://arxiv.org/abs/1909.11942

2 XLNet + DAAF + Verifier (ensemble) 88.592 90.859
Jul 22,2019 PINGAN Omni-Sinitic
2 ALBERT (single model) 88.107 20.902
Sep 16, 2019 Google Research & TTIC
https://arxiv.org/abs/1909.11942
2 UPM (ensemble) 88.231 90.713
(10126,2019. Anonymous
3 XLNet + SG-Net Rank Name Model URL Score CoLA SST-2 MRPC  STS-B QQP MNLI-m MNLI-mm QNLI RTE WNLI
Aug 04, 2019 Shanghai Jiao Tong (
. 1 T5Team - Google 5 (Z' 897 708 97.1 91.9/89.2 92.5/92.1 74.6/90.4  92.0 917 967 925 93.2
https:/arxivorg| -
2 ALBERT-Team Google LanguageALBERT (Ensemble) (7' 894 691 97.1 93.4/912 925/920 742/905 913 910 992 892 91.8
4 XLNet + SG-Net Ve
o + 3 I ALICE v2 large ensemble (Alibaba DAMO NLP) (7' 890 692 97.1 936/915 927/92.3 74.4/90.7  90.7 902 99.2 87.3 89.7
Aug 04, 2019 Shanghai Jiao Tong (
https://arxiv.org 4 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) (3' 88.8 68.0 96.8 93.1/90.8 92.4/92.2 74.8/90.3 91.1 90.7 98.8 88.7 89.0
5 Facebook Al RoBERTa (' 885 67.8 967 92.3/89.8 922/91.9 743/902  90.8 90.2 989 882 89.0
5 UPM (sir
m Anor 6 XLNet Team XLNet-Large (ensemble) C)J' 88.4 67.8 96.8 93.0/90.7 91.6/91.1 74.2/90.3 90.2 89.8 98.6 86.3 904
4 7 Microsoft D365 Al & MSRAI  MT-DNN-ensemble (' 876 684 9.5 927/90.3 91.1/90.7 73.7/89.9  87.9 874 960 863 89.0
6 BERT + DAE +
. ) 8 GLUE Human Baselines GLUE Human Baselines (4" 871 664 97.8 86.3/80.8 92.7/92.6 59.5/80.4  92.0 928 912 936 959
Mar 20, 2019 Joint LaboratoryofHI| ~ " ——— —— /o
9  Stanford Hazy Research Snorkel MeTal (7' 832 638 962 91.5/88.5 90.1/89.7 73.1/89.9  87.6 872 939 809 65.1
6 RoBERTa (
10 XLM Systems XLM (English only) (7' 831 629 956 90.7/87.1 88.8/882 73.2/898  89.1 88.5 940 760 71.9
(10120,2019 | Face
11 Zhuosheng Zhang SemBERT (' 829 623 946 91.2/883 87.8/86.7 72.8/89.8  87.6 863 94.6 84.5 65.1
7 RoBERTa+S) A
12 Dangi Chen SpanBERT (single-task training) C; 82.8 64.3 94.8 90.9/87.9 89.9/89.1 71.9/89.5 88.1 87.7 943 79.0 65.1
[ Sep 12,2019 (
13 Kevin Clark BERT + BAM (' 823 615 952 91.3/88.3 88.6/87.9 725/89.7  86.6 858 93.1 804 65.1
7 BERT + ConvLSTM +1 14 Nitish Shirish Keskar Span-Extractive BERT on STILTs (7' 823 632 94.5 90.6/87.6 89.4/89.2 722/89.4  86.5 858 92.5 79.8 65.1
ar 15,2015 Lay
15 Jason Phang BERT on STILTs (' 820 621 943 90.2/86.6 88.7/88.3 71.9/89.4  86.4 856 927 80.1 65.1
16 Bz RGLM-Base (Huawei Noah's Ark Lab) 813 569 94.2 90.7/87.7 89.7/89.1 72.2/89.4  86.1 854 921 785 65.1
4 17 Jacob Deviin BERT: 24-layers, 16-heads, 1024-hidden (7' 805 605 949 89.3/85.4 87.6/86.5 72.1/893 867 859 927 701 65.1




