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Shift-reduce Parsing

Action

NT(S)
NT(NP)
NT(VP)
SHIFT
REDUCE

push an open non-terminal onto the stack

shift a symbol from the buffer onto the stack

repeatedly pops completed subtrees or terminal
symbols from the stack until an open nonterminal is
encountered, and then this open NT is popped and
used as the label of a new constituent that has the
popped subtrees as its children. This new completed
constituent is pushed onto the stack as a single
composite item.
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Sequence to Sequence Model

Encoder Decoder

Recursive Neural Networks Recurrent Neural Network Grammars
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Recursive Neural Networks as Encoder

compositional function:

(OO0 00
\ (QOO000)
/ \
(GO0 00 (GO0 00

(QOO000)
\
(e]e]e]e]e) (0000 = f( (©oo0oDo , (©OOOO )
/ \

(CO000) (0O00OD (©CO0O0OVD (CO00O  for example:
| love Starbucks coffee

(ooo0o = W; (ooco0o + W, (OOOOO +b




Recursive Neural Networks as Encoder

compositional function:

NP VP
DT NOUN VP PP
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what’s good about it?



Recursive Neural Networks as Encoder

compositional function:

ADJP-NP Parsing with Compositional Vector Grammars, Socher et al, 2013



Stanford Sentiment Treebank

O
This

(-
(-
() (= O
film '
(= O
@ O @& (£
does n't care
O (£
about
O
®H O @
or
®» O © @
wit  ally
OO O
cleverness other

©
kind

()
OO
of P

intelligent humor

‘ very negative

. very positive



Training in Recursive Neural Network
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Recursive Neural Network

What’s bad about it?

Or, what’s good about Recurrent NN?

hard to batch, parse tree
errors, difficult to pretrain
(or use pretrained models) ...
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Recurrent Neural Network Grammars
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predict the next action, and how can we
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Q: What information can we use to

encode it with an RNN?
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A: We can use an RNN for each of:
1. Previous terminal symbols
2. Previous actions
3. Current stack contents
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Final stack symbol is
(a vector representation of)
the complete tree.




Syntactic Composition

Need representation for: (NP The hungry cat)
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Recursion

Need representation for: (NP The hungry cat)
(NP The (ADJP very hungry) cat)
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Recursion
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Stack symbols composed recursively
mirror corresponding tree structure

S
/\ Effect
Stack encodes
NP VP top-down syntactic

/ \ recency, rather

The hungry cat meows . than left-to-right
string recency
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Implementing RNNGs
Stack RNNs

 Augment a sequential RNN with a stack pointer

* [wo constant-time operations

* push - read input, add to top of stack, connect to current
location of the stack pointer

* poOp - move stack pointer to its parent

A summary of stack contents is obtained by accessing the
output of the RNN at location of the stack pointer
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Each word I1s conditioned on history
represented by a trio of RNNs
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NP VP
The hungry cat meows -
p(meows|history)
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Train with backpropagation through

" structure
In training, g This network Is
backpropagate dynamic. Don't
through these /\ derive gradients
three RNNSs) NP VP by hand—that’s
error prone. Use
automatic
differentiation
iInstead
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Complete model
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Implementing RNNGs
Inference

 An RNNG is a joint distribution p(x,y) over strings (X) and parse
trees (y)

 \We are interested in two inference questions:
 Whatis p(x) for a given x? [language modeling]

* What is max p(y | x) for a given x? [parsing]
y

* Unfortunately, the dynamic programming algorithms we often
rely on are of no help here

* \We can use importance sampling to do both by sampling from a
discriminatively trained model



Implementing RNNGs
Inference

 An RNNG is a joint distribution p(x,y) over strings (X) and parse
trees (y)

 \We are interested in two inference questions:

- What is p(x) for a given X7 [language modeling] »

* What is max p(y | x) for a given x? [parsing]
y

* Unfortunately, the dynamic programming algorithms we often
rely on are of no help here

* \We can use importance sampling to do both by sampling from a
discriminatively trained model
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Assume we've got a conditional distribution ¢(y | x)

st. () p(x,y) >0 = q(y|z) >0
(i) y~q(y|x) istractable and
(iii) ¢y | =) is tractable

et the importance weights w(x,y) =

y
q(y | =)
px)= ) p@y)= > wxyqy]|x

yey(x) ycV(x)

= Eyqylzyw(z,y)
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lmportance sampling

> pxy)= ) wyly|w)

ye)(x) yeY(x)

= Eyq(ylayw (e, y)

p(x)

Replace this expectation with its Monte Carlo
estimate.

y' ~q(y|x) forie{l,2,...,N}



lmportance sampling

> pxy)= ) wyly|w)

ye)(x) yeY(x)

= Eyq(ylayw (e, y)

p(x)

Replace this expectation with its Monte Carlo
estimate.

(Z)Nq(y‘aj) foriE{l,Q,---aN}
N

i MC 1 ;
tq(y|a})w(w7 y) ~ N ZUJ(QE, y( ))
1=1

Y




English PTB (LM)

Perplexity

5-gram IKN

LSTM + Dropout

Generative (IS)

Chinese CTB (LM)

Perplexity

5-gram IKN

LSTM + Dropout

Generative (IS)




Do we need a stack”

Kuncoro et al., Oct 2017

* Both stack and action history encode the same
iInformation, but expose it to the classifier in

different ways.

Model Fi
Vinyals et al. (2015)' 92.1
Choe and Charniak (2016) | 92.6
Choe and Charniak (2016)" | 93.8
Baseline RNNG 93.3
Ablated RNNG (no history) | 93.2
Ablated RNNG (no buffer) | 93.3
Ablated RNNG (no stack) 92.5
Stack-only RNNG 93.6
GA-RNNG 93.5

Leaving out stack
IS harmtul; using it
on Its own works
slightly better than
complete model!
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RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the Composed seguence,
using embedding of NT for similarity.

3 e

e \What does this learn?

2.9

2

1.5

1

ADJP VP NP PP QP SBAR

Figure 3: Average perplexity of the learned atten-
tion vectors on the test set (blue), as opposed to
the average perplexity of the uniform distribution
(red), computed for each major phrase type.



RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Noun phrases

Canadian (0.09) Auto (0.31) Workers (0.2) union (0.22) president (0.18)

no (0.29) major (0.05) Eurobond (0.32) or (0.01) foreign (0.01) bond (0.1) offerings (0.22)
Saatchi (0.12) client (0.14) Philips (0.21) Lighting (0.24) Co. (0.29)

nonperforming (0.18) commercial (0.23) real (0.25) estate (0.1) assets (0.25)

the (0.1) Jamaica (0.1) Tourist (0.03) Board (0.17) ad (0.20) account (0.40)

the (0.0) final (0.18) hour (0.81)

their (0.0) first (0.23) test (0.77)

Apple (0.62) , (0.02) Compaq (0.1) and (0.01) IBM (0.25)
both (0.02) stocks (0.03) and (0.06) futures (0.88)

NP (0.01), (0.0) and (0.98) NP (0.01)




RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Verb phrases
buying (0.31) and (0.25) selling (0.21) NP (0.23)
ADVP (0.27) show (0.29) PRT (0.23) PP (0.21)
pleaded (0.48) ADJP (0.23) PP (0.15) PP (0.08) PP (0.06)
received (0.33) PP (0.18) NP (0.32) PP (0.17)
cut (0.27) NP (0.37) PP (0.22) PP (0.14)
to (0.99) VP (0.01)
were (0.77) n’t (0.22) VP (0.01)
did (0.39) n’t (0.60) VP (0.01)
handle (0.09) NP (0.91)
VP (0.15) and (0.83) VP 0.02)




RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Prepositional phrases
ADVP (0.14) on (0.72) NP (0.14)
ADVP (0.05) for (0.54) NP (0.40)
ADVP (0.02) because (0.73) of (0.18) NP (0.07)
such (0.31) as (0.65) NP (0.04)
from (0.39) NP (0.49) PP (0.12)
of (0.97) NP (0.03)
in (0.93) NP (0.07)
by (0.96) S (0.04)
at (0.99) NP (0.01)
NP (0.1) after (0.83) NP (0.06)




summary

anguage Is hierarchical, and this inductive bias can be
encoded into an RNN-style model.

RNNGs work by simulating a tree traversal—like a pushdown
automaton, but with continuous rather than finite history.

Modeled by RNNs encoding (1) previous tokens, (2) previous
actions, and (3) stack contents.

A stack LSTM evolves with stack contents.

The final representation computed by a stack LSTM has a top-
down recency bias, rather than left-to-right bias, which might be
useful in modeling sentences.

—ffective tfor parsing and language modeling, and seems to
capture linguistic intuitions about headedness.




