Shift-reduce Parsing, Recursive
Neural Networks, Recurrent Neural

Network Grammars

Lingpeng Kong

Department of Computer Science, The University of Hong Kong

Parse Trees

S

ST

NNP VBZ

DTAﬁ/\N}\I\kNN IN/ \P
T | /N

a public research university in NNP NNP

L

Hong Kong

Shift-reduce Parsing

The hungry cat meows

(S (NP The hungry cat)(VP meows) .)

Shift-reduce Parsing

Bufter

Stack

Shift-reduce Parsing

f(

) — Action

Buffer

Stack

Shift-reduce Parsing

Action

NT(S)
NT(NP)
NT(VP)
SHIFT
REDUCE

push an open non-terminal onto the stack

shift a symbol from the buffer onto the stack

repeatedly pops completed subtrees or terminal
symbols from the stack until an open nonterminal is
encountered, and then this open NT is popped and
used as the label of a new constituent that has the
popped subtrees as its children. This new completed
constituent is pushed onto the stack as a single
composite item.

Shift-reduce Parsing

Stack

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

NT(S)

Stack

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

(S

Stack

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

(S

Stack

NT(NP)

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

(NP

(S

Stack

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

(NP

(S

Stack

Shift

E\ (/p)
el o w3
— = O 0

c -

Buffer

Shift-reduce Parsing

The

(NP

(S

Stack

E\ (/p)

ol g &

F= =
Buffer

Shift-reduce Parsing

The

(NP

(S

Stack

Shift

E\ (/p)
- =
o) © O
= O
2 =
Buffer

Shift-reduce Parsing

hungry

The

(NP

(S

Stack

cat

MEeows

Bufter

Shift-reduce Parsing

hungry

The

(NP

(S

Stack

Shift

cat

MEeows

Bufter

Shift-reduce Parsing

cat

hungry

The

(NP

(S

Stack

MEeows

Bufter

Shift-reduce Parsing

cat

hungry

The

(NP

(S

Stack

Reduce

MEeows

Bufter

Shift-reduce Parsing

(NP The
hungry cat)

(S

Stack

MEeows

Bufter

Shift-reduce Parsing

(NP The
hungry cat)

(S

Stack

NT(VP)

MEeows

Bufter

Shift-reduce Parsing

(VP

(NP The
hungry cat)

(S

Stack

MEeows

Bufter

Shift-reduce Parsing

(VP

(NP The
hungry cat)

(S

Stack

Shift

MEeows

Bufter

Shift-reduce Parsing

MEeOoWws

(VP Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

Reduce

MEeOoWws

(VP Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

(VP meows) Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

Shift

(VP meows) Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

(VP meows) Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

Reduce

(VP meows) Buffer

(NP The
hungry cat)

(S

Stack

Shift-reduce Parsing

(S (NP The Buffer
hungry cat)

(VP

meows) .)

Stack

How to make decisions?

(VP meows) Buffer

(NP The
hungry cat)

(S

Stack

Stack LSTMs

E\ (/p)
ol 5 || g
2 =
. Buffer
(NP
(S
Stack

(Dyer et al, 2015)

Stack LSTMs

LSTM,
2| ° || E
The
y Buffer
> !
H (NP
S]
—
(S
Stack

(Dyer et al, 2015)

Stack LSTMs

LSTM,

The

(NP

(S

Stack

f(

) — Shift

LSTM,
2. (7]
S EH S
= =

Buffer

(Dyer et al, 2015)

Stack LSTMs

LSTM,
cat Reduce
! o
hungry § le—
t &
The
zc” p Buffer
H (NP
S T
—
(S
Stack

(Dyer et al, 2015)

Stack LSTMs

LSTM,

LSTM,

(NP

The | hungry

cat

(S

Stack

Composition function

MeoWwsS
T

Buffer

(Dyer et al, 2015)

Stack LSTMs

LSTM,
(7))
S
8 f—
-
(NP The
o hungry cat) Buffer
- O
-
2 1
—
(S
Stack

(Dyer et al, 2015)

Stack LSTMs

? LSTM,
)
=
8 f—
-
(NP The
o hungry cat) Buffer
- O
—
Y2 !
—
(S
Stack

(Dyer et al, 2015)

Sequence to Sequence Model

Encoder Decoder

Recursive Neural Networks Recurrent Neural Network Grammars

Recursive Neural Networks as Encoder

Recursive Neural Networks as Encoder

sentence representation

(COO000)

N

(eJeJe)eYo)

\
/ (©C0000)
/ \
(C0000 (©0000 (©0000D (0000

| love Starbucks coffee

Recursive Neural Networks as Encoder

compositional function:

(OO0 00
\ (QOO000)
/ \
(GO0 00 (GO0 00

(QOO000)
\
(e]e]e]e]e) (0000 = f((©oo0oDo , (©OOOO)
/ \

(CO000) (0O00OD (©CO0O0OVD (CO00O for example:
| love Starbucks coffee

(ooo0o = W; (ooco0o + W, (OOOOO +b

Recursive Neural Networks as Encoder

compositional function:

NP VP
DT NOUN VP PP
(00000 = f((@©0000 , (©000O , (NP-DTNOUN))
(00000 = f((@©000D , (©000® , (VP>VPPP))

what’s good about it?

Recursive Neural Networks as Encoder

compositional function:

ADJP-NP Parsing with Compositional Vector Grammars, Socher et al, 2013

Stanford Sentiment Treebank

O
This

(-
(-
() (= O
film '
(= O
@ O @& (£
does n't care
O (£
about
O
®H O @
or
®» O © @
wit ally
OO O
cleverness other

©
kind

()
OO
of P

intelligent humor

‘ very negative

. very positive

Training in Recursive Neural Network

OO
not

d

¥

co P2 = g(a,p1)

oo p1=g(b,c)

QO O) QOO
very good ...
b C

softmax(Wa)

Classification with 5 classes:

W e R>*¢

Recursive Neural Network

What’s bad about it?

Or, what’s good about Recurrent NN?

hard to batch, parse tree
errors, difficult to pretrain
(or use pretrained models) ...

O ® o @
O Ol © O O O
o O Q0 O O O o O O O®
ooo C@.:)ooo OO O O O O O @
o e Oe b DO O O O O o® OO0 O @
© O O @O OO0 @ O
0000 O O 00 o ® OO0 O O 50 60 O0e
OEL O OO o Oe ® O & DO e
OO
(@Yo e 00 @0 < e O O e O
COO O O O @© @© O O e
O O O O O @ O @ (@
00 © O T
O O ®
e o e ||C 0 © o o ® ®
o o © % ® o
CIC CN(ONE® O O o @O
®@ ® O OO0 O O O O O O
0 7D © o° O 0O ©0O OoO|le@®e@ W 00
® @O O @% OO @ O @
® O O O OO0 O O Q0 @ © @0
.QOC)O OOOO O® O®
O@0O OOO% O O O e
@O O O
O
O ® ® o @
O O a © @ ®
O O O @ O O O ° @ -
© O O O 0O @ O O o " o O
O O @ O OO0 O O OOO.
d % O 0O @O0 @ O O ® O
OO0 00 @O0 ©
O O 0 o 0 @0 00 CO0O O
D O0e

Recurrent Neural Network Grammars

(Ordered) tree traversals are sequences

S

N\

NP VP

I

The hungry cat meows .

(Ordered) tree traversals are sequences

S

N\

NP VP

I

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

NP VP

I

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

N

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

N

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

VP

Ihe hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

N

ngry cat meows .

S(NP(The hungry ecat) VP(meows) .)

SRS
o V. N
1V
el et
PR WY O PEND SERNC AN

(Ordered) tree traversals are sequences

Ihe hungry cat meows .

\ 4
S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

Ihe hungry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

The hungry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

The hungry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

Th hunry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

(Ordered) tree traversals are sequences

Th hunry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

Terminals Stack | Action

Terminals Stack | Action
NT(S)

Terminals Stack | Action
NT(S)
(S | NT(NP)

Terminals Stack | Action
NT(S)
(S | NT(NP)
(S (NP

Terminals Stack | Action
NT(S)

(S | NT(NP)

(S (NP | GEN(The)

Terminals Stack | Action
NT(S)
(S | NT(NP)
(S (NP | GEN(The)
The (S (NP The

Terminals Stack | Action
NT(S)
(S | NT(NP)
(S (NP | GEN(The)
The (S (NP The | GEN(hungry)

Terminals Stack | Action
NT(S)
(S | NT(NP)
(S (NP | GEN(The)
The (S (NP The | GEN(hungry)

The hungry (S (NP The hungry

Terminals Stack | Action
NT(S)
(S | NT(NP)
(S (NP | GEN(The)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)

The hungry cat (S (NP The hungry cat

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)

The hungry cat (S (NP The hungry cat | REDUCE

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(cat)
The hungry cat (S (NP The hungry cat | REDUCE

The hungry cat (S (NP The hungry cat)

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)
The hungry cat (S (NP The hungry cat | REDUCE

The hungry cat

(S (NP The hungry cat)

Compress “The hungry cat”
INto a single composite sympol

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)
The hungry cat (S (NP The hungry cat | REDUCE

The hungry cat (S (NP The hungry cat)

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(car)
The hungry cat (S (NP The hungry cat | REDUCE

The hungry cat (S (NP The hungry cat) = NT(VP)

Terminals

The

The hungry

The hungry cat
The hungry cat

The hungry cat

Stack | Action

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

(S (NP The hungry cat) (VP

NT(S)
NT(NP)
GEN(The)
GEN(hungry)

GEN(car)
REDUCE
NT(VP)

Terminals

The

The hungry

The hungry cat
The hungry cat

The hungry cat

predict the next action, and how can we

Stack | Action

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat
(S (NP The hungry cat)

Q: What information can we use to

encode it with an RNN?

NTVE)
(S (NP The hungry cat) (VP _ (

NT(S)
NT(NP)
GEN(The)
GEN(/hungry)

GEN(car)
REDUCE

Terminals Stack | Action

NTES)
(S | NTRNP)
(S (NP | GBIN(7%e)
The (S (NP The | GEIN(/hungry)
The hungry (S (NP The hungry | GEIN(caft)
The hungry cat (S (NP The hungry cat | REBDUCE
The hungry cat (S (NP The hungry cat) P)

i ————ly

A: We can use an RNN for each of:
1. Previous terminal symbols
2. Previous actions
3. Current stack contents

Terminals

The

The hungry

The hungry cat
The hungry cat

The hungry cat

Stack | Action

(S

(S (NP

(S (NP The

(S (NP The hungry

(S (NP The hungry cat

(S (NP The hungry cat)

(S (NP The hungry cat) (VP

NT(S)
NT(NP)
GEN(The)
GEN(hungry)

GEN(car)
REDUCE
NT(VP)
GEN(meows)

Terminals Stack | Action

NT(S)
(S | NT(NP)
(S (NP | GEN(7%e)
The (S (NP The | GEN(hungry)
The hungry (S (NP The hungry | GEN(caft)
The hungry cat (S (NP The hungry cat | REDUCE
The hungry cat (S (NP The hungry cat) = NT(VP)
The hungry cat (S (NP The hungry cat) (VP | GEN(meows)
The hungry cat meows (S (NP The hungry cat) (VP meows @A REDUCE

The hungry cat meows (S (NP The hungry cat) (VP meows) | GEN(.)

The hungry cat meows . | (S (NP The hungry cat) (VP meows) . = REDUCE

The hungry cat meows . | (S (NP The hungry cat) (VP meows) .)

Terminals Stack | Action

A JLC Jlurls

(. L\ <
e

Final stack symbol is
(a vector representation of)
the complete tree.

Syntactic Composition

Need representation for: (NP The hungry cat)

sl A A
L A A

NP | |Thel|lhungry||cat NP

Recursion

Need representation for: (NP The hungry cat)
(NP The (ADJP very hungry) cat)

il A A
il A A

NP|(|The|lhungry||cat NP

Recursion

Need representation for:

(NP The (ADJP very hungry) cat)

—_— —
@ v

/@?’

NP| [The

~ [OOE€
00¢
00¢
< 9009
00¢
- | O0E€
00¢

cat NP

Stack symbols composed recursively
mirror corresponding tree structure

S

N\

NP VP

I

The hungry cat meows .

The hungry cat mMeows

Stack symbols composed recursively
mirror corresponding tree structure

S

N\

NP VP

I

The hungry cat meows .

The hungry cat Meows

o
g .

NP 2

Stack symbols composed recursively
mirror corresponding tree structure

S

N\

NP VP

I

The hungry cat meows .

The hungry cat mMeows

NP & - VPE—3

Stack symbols composed recursively
mirror corresponding tree structure

S
/\ Effect
Stack encodes
NP VP top-down syntactic

/ \ recency, rather

The hungry cat meows . than left-to-right
string recency

The hungry cat mMeows

\i/ i J
NP & - VPE—3
J \./
S G -

Implementing RNNGs
Stack RNNs

 Augment a sequential RNN with a stack pointer

* [wo constant-time operations

* push - read input, add to top of stack, connect to current
location of the stack pointer

* poOp - move stack pointer to its parent

A summary of stack contents is obtained by accessing the
output of the RNN at location of the stack pointer

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

Implementing RNNGs
Stack RNNs

The evolution of the stack LSTM over

time mirrors tree structure
S

N\

NP VP

I

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

stack

The evolution of the stack LSTM over

time mirrors tree structure
S

NP VP

I

The hungry cat meows .

S(NP(The hungry cat) VP(meows) .)

stack S

The evolution of the stack LSTM over

time mirrors tree structure
S

N

The hungry cat meows .
S(NP(The hungry cat) VP(meows) .)

NP 2

stack S

The evolution of the stack LSTM over

time mirrors tree structure
S

N

Th hungry cat meows .
S(NP(The hungry cat) VP(meows) .)

NP 2

stack S

The evolution of the stack LSTM over

time mirrors tree structure
S

VP

The hungry cat meows .

AR -
Db
0’\

- \;v"

S(NP(The hungry cat) VP(meows) .)

The evolution of the stack LSTM over

time mirrors tree structure
LS

N

ngry cat meows .

S(NP(The hungry cat) VP(meows) .)

’."r.>
" U L. o
RN o Us # D AR Ao
ngpie d.ak e g - - SsRg-hle
R L g

The evolution of the stack LSTM over

time mirrors tree structure
S

The hungry cat meows .

\ 4
S(NP(The hungry cat) VP(meows) .)

NP &

...K&, .
-

The evolution of the stack LSTM over

time mirrors tree structure
LS

The hungry cat meows .

v
S(NP(The hungry cat) VP(meows) .)

The evolution of the stack LSTM over

time mirrors tree structure
LS

The hungry cat meows .

The evolution of the stack LSTM over
time mirrors tree structure

J
F >
— N
AR

The evolution of the stack LSTM over
time mirrors tree structure

oC

P e |
L
O -
e
A Y
4
A
\

The evolution of the stack LSTM over
time mirrors tree structure

v
)

(CATAT

Each word I1s conditioned on history
represented by a trio of RNNs
S

N\

NP VP
The hungry cat meows -
p(meows|history)
i

S(NP(The hungry cat) VP().)
J \L/ J
NP 2 e VP e

stack S
R

Train with backpropagation through

" structure
In training, g This network Is
backpropagate dynamic. Don't
through these /\ derive gradients
three RNNSs) NP VP by hand—that’s
error prone. Use
automatic
differentiation
iInstead

¥e & SR 5
-, "U‘> s -~

And
recursively

through this NP

structure.

stack

R A Tl et ST 4

Complete model

AT
§$&§«'§
TO>= ..

St E._tt] o T

p(:l:,y) s

/' i ']u\ e m—
! ! ! ! !
NP (VP cat hungry The
The hungry cat Stack
a(z,y)| u; = tanh (W[Ot; St; ht] . I C)
H plat | a<t) T T
o tput act
la(z,y) - Outpu action
= Jl €XP Fq, Ut + Yo, (buffer) history

=1 Za’, EAG (Tt aSt ant) eXp ra’ ut ba,

Implementing RNNGs
Inference

 An RNNG is a joint distribution p(x,y) over strings (X) and parse
trees (y)

 \We are interested in two inference questions:
 Whatis p(x) for a given x? [language modeling]

* What is max p(y | x) for a given x? [parsing]
y

* Unfortunately, the dynamic programming algorithms we often
rely on are of no help here

* \We can use importance sampling to do both by sampling from a
discriminatively trained model

Implementing RNNGs
Inference

 An RNNG is a joint distribution p(x,y) over strings (X) and parse
trees (y)

 \We are interested in two inference questions:

- What is p(x) for a given X7 [language modeling] »

* What is max p(y | x) for a given x? [parsing]
y

* Unfortunately, the dynamic programming algorithms we often
rely on are of no help here

* \We can use importance sampling to do both by sampling from a
discriminatively trained model

lmportance sampling

Assume we've got a conditional distribution ¢(y | x)

st. () p(x,y) >0 = q(y|z) >0
(i) y~q(y|x) istractable and
(iii) ¢y | =) is tractable

lmportance sampling

Assume we've got a conditional distribution ¢(y | x)

st. () p(x,y) >0 = q(y|z) >0
(i) y~q(y|x) istractable and
(iii) ¢(y | =) is tractable

et the importance weights w(x,y) = 5(‘ym)

lmportance sampling

Assume we've got a conditional distribution ¢(y | x)

st. () p(x,y) >0 = q(y|z) >0
(i) y~q(y|x) istractable and
(iii) ¢y | =) is tractable

et the importance weights w(x,y) =

y
q(y | =)
px)=) p@y)= > wxyqy]|x

yey(x) ycV(x)

= Eyqylzyw(z,y)

lmportance sampling

px)= > pEy)= Y w=yqyl=

ye)(x) yeY(x)

= Eyq(ylayw (e, y)

lmportance sampling

> pxy)=) wyly|w)

ye)(x) yeY(x)

= Eyq(ylayw (e, y)

p(x)

Replace this expectation with its Monte Carlo
estimate.

y' ~q(y|x) forie{l,2,...,N}

lmportance sampling

> pxy)=) wyly|w)

ye)(x) yeY(x)

= Eyq(ylayw (e, y)

p(x)

Replace this expectation with its Monte Carlo
estimate.

(Z)Nq(y‘aj) foriE{l,Q,---aN}
N

i MC 1 ;
tq(y|a})w(w7 y) ~ N ZUJ(QE, y())
1=1

Y

English PTB (LM)

Perplexity

5-gram IKN

LSTM + Dropout

Generative (IS)

Chinese CTB (LM)

Perplexity

5-gram IKN

LSTM + Dropout

Generative (IS)

Do we need a stack”

Kuncoro et al., Oct 2017

* Both stack and action history encode the same
iInformation, but expose it to the classifier in

different ways.

Model Fi
Vinyals et al. (2015)' 92.1
Choe and Charniak (2016) | 92.6
Choe and Charniak (2016)" | 93.8
Baseline RNNG 93.3
Ablated RNNG (no history) | 93.2
Ablated RNNG (no buffer) | 93.3
Ablated RNNG (no stack) 92.5
Stack-only RNNG 93.6
GA-RNNG 93.5

Leaving out stack
IS harmtul; using it
on Its own works
slightly better than
complete model!

RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed seguence,
using embedding of NT for similarity.

e \What does this learn?

RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the Composed seguence,
using embedding of NT for similarity.

3 e

e \What does this learn?

2.9

2

1.5

1

ADJP VP NP PP QP SBAR

Figure 3: Average perplexity of the learned atten-
tion vectors on the test set (blue), as opposed to
the average perplexity of the uniform distribution
(red), computed for each major phrase type.

RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Noun phrases

Canadian (0.09) Auto (0.31) Workers (0.2) union (0.22) president (0.18)

no (0.29) major (0.05) Eurobond (0.32) or (0.01) foreign (0.01) bond (0.1) offerings (0.22)
Saatchi (0.12) client (0.14) Philips (0.21) Lighting (0.24) Co. (0.29)

nonperforming (0.18) commercial (0.23) real (0.25) estate (0.1) assets (0.25)

the (0.1) Jamaica (0.1) Tourist (0.03) Board (0.17) ad (0.20) account (0.40)

the (0.0) final (0.18) hour (0.81)

their (0.0) first (0.23) test (0.77)

Apple (0.62) , (0.02) Compaq (0.1) and (0.01) IBM (0.25)
both (0.02) stocks (0.03) and (0.06) futures (0.88)

NP (0.01), (0.0) and (0.98) NP (0.01)

RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Verb phrases
buying (0.31) and (0.25) selling (0.21) NP (0.23)
ADVP (0.27) show (0.29) PRT (0.23) PP (0.21)
pleaded (0.48) ADJP (0.23) PP (0.15) PP (0.08) PP (0.06)
received (0.33) PP (0.18) NP (0.32) PP (0.17)
cut (0.27) NP (0.37) PP (0.22) PP (0.14)
to (0.99) VP (0.01)
were (0.77) n’t (0.22) VP (0.01)
did (0.39) n’t (0.60) VP (0.01)
handle (0.09) NP (0.91)
VP (0.15) and (0.83) VP 0.02)

RNNG as a mini-linguist

 Replace composition with one that computes
attention over objects in the composed sequence,
using embedding of NT for similarity.

e \What does this learn?

Prepositional phrases
ADVP (0.14) on (0.72) NP (0.14)
ADVP (0.05) for (0.54) NP (0.40)
ADVP (0.02) because (0.73) of (0.18) NP (0.07)
such (0.31) as (0.65) NP (0.04)
from (0.39) NP (0.49) PP (0.12)
of (0.97) NP (0.03)
in (0.93) NP (0.07)
by (0.96) S (0.04)
at (0.99) NP (0.01)
NP (0.1) after (0.83) NP (0.06)

summary

anguage Is hierarchical, and this inductive bias can be
encoded into an RNN-style model.

RNNGs work by simulating a tree traversal—like a pushdown
automaton, but with continuous rather than finite history.

Modeled by RNNs encoding (1) previous tokens, (2) previous
actions, and (3) stack contents.

A stack LSTM evolves with stack contents.

The final representation computed by a stack LSTM has a top-
down recency bias, rather than left-to-right bias, which might be
useful in modeling sentences.

—ffective tfor parsing and language modeling, and seems to
capture linguistic intuitions about headedness.

